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HW accelerators — increased performance for special cases
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Unlike before, we work hard for l[imited performance gains

End of the Line = 2X/20 years (3%/yr) o
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Some Key Drivers for Specialization: Data Explosion & Al

Structured data Human interaction data Digitization of analog reality

40 petabytes 4 petabytes a day 40,000 petabytes a day*

Walmart’s transaction Per-day posting to Facebook 10m connected cars by 2020
database (2017) across 2 billion.users

(2017) Front camera _
i 20MB / sec Front ultrasonic sensors
2MB per active user 10kB / sec ;
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Motivating example: Autonomous/Assisted Driving

- 4 TB/day per instrumented vehicle

- 1 PB/day for a 250-car fleet
HTH - Not practical to move all data to the
10 mélhon Datszenter
® oo
- Need all sorts of accelerators
m ® s mion at the Edge!
® ;. miten
® s ‘-
{ ' T ' 1 | >
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10 million miles and counting
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But we need Billions of miles for safety

How many miles (years®) would (A) 1.09 fatalities per

autonomous vehicles have to be 100 million miles?

driven... |

(1) without failure to demonstrate with 95% 275 million miles - Source:
confidence that their failure rate is at most. .. (12.5 years)

Safe, autonomous vehicles
depend on billions of miles
of simulated driving

¥

Need for accelerators in
the Data Center!

8.8 billion miles
(400 years)

(2) to demonstrate with 95% confidence their

failure rate to within 20% of the true rate of...

(3) to demonstrate with 95% confidence and 11 billion miles
80% power that their failure rate is 20% better (200 years)

than the human driver failure rate of...

Source: RAND Corp.” Driving to Safety”
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Conventional accelerators

CPU extensions

ISA-level acceleration

— Vector and matrix extensions

— Reduced precision

— Example: ARM SVE2

256-bit
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lintz ) loop control }mex | .. other

BT |- memory  [EI] .. predicate regiter
1 . scalar register ] . vector register

GPUs
Data parallel calculations

— Optimized for throughput

— High-bandwidth memory
— Example: Nvidia, AMD

Deep Learning Accelerators
ASIC-like flexible performance

— Data-flow inspired, systolic, spatial
— Cost optimized
— Example: Google’s TPU, FPGAs

:1" Sis DDR3 :éao Bl  Weight FIFO
Interfaces (Weight Fetcher)
—————3| Control ﬂm GiB/s
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[[]Computation |:Jj
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Unconventional accelerators

Analog neuromorphic computing
Massive speedup for Al training and inference

— Complex matrix calculations in one step
— 10-100x faster

— 10-1000x more energy efficient
(Compared to GPU)
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Optical Computing
Designed for “unsolvable” optimization problems

— Harnessing the properties of light at the microscale

— Prototype has world record
1,000 optical components

— Scalable to
100,000 components
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The memristor Dot Product Engine (DPE)

v1| .

Input o 2l

_ - Harness memristors in dense crossbar arrays

Voltage ] \:;Z’.'H |

V| - . ° . — - I
vector : \‘;7/'« \;Zn.. \3& Memristor = non-volatile, analog memory cell
v, * r' 5,:; 5,-4, - Parallel activation of every row and column in crossbar
Output gy g Vector-matrix multiplication (VMM) in a single cycle
current 7y _— : - Computing =read operation
Ij_ Xi Gij V; P J P
vector

- Efficient multiply & add in analog domain

- Key advantage is in-memory processing




Dot Product Engine: working prototype chip
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integration of
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analog computing

M. Hu, et. al, Adv. Mater.
2018
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Image Processing on memristor-DPE system
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Experimental conductance pattern of
memristor array

Input image

5x5 portions at a tfime
Apply 25 Voltages to array

Experimental outputs — 10 filtered images output in parallel

Gaussian Average Iaticn (45%) Motion (135°) Saobel (x-gradient) Sobel (y-gradient) LoG (¢ =02) LoG (»=0.5) LoG (== 0.7)

Reduces computations from O(Cm?n?) operations to O(n?)
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System Architecture, Compiler, & Software Support

- Developed Architecture supporting all state-of-the-art neural networks (CNN, LSTM, MLPs, RBMs, etc.)
- Developed an “Assembly” code (ISA) for our memristor accelerator
- Built a compiler, with support for standard ONNX format

b e Connect Architecture: PUMA — Programmable Ultra-efficient -
[teo] [met] [mes] [Tee] W emristor-based Accelerator —— Application Layer
on—ch_ip_rle_twork *

10-100k memristor xbars (128x128) performing matrix . i
(miez) | [ies) [iEeso | fen) @ vector multiplications » Neural Network specification
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Benchmarking

Inference energy normalized to PUMA (lower is better)
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Types of Neural Networks
Lower energy than CPUs (1,000 - 1,000,000x) and NVIDIA GPUs (10 - 1,000x)

Larger networks (NMT, WLM) benefit the most
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Benchmarking

Inference latency normalized to PUMA (lower is better)
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Larger networks (NMT, WLM) benefit the most

Hewlett Packard

Enterprise

—

15



—

Hewlett Packard
Enterprise

Future opportunities:
brain-inspired approaches as
alternative to quantum computing



Memristors also provide neuron-like behavior

Current (x100 pA)

0.0 0.5 1.0

15 \
Voltaae (V)
Can build a “neuronic” circuit
element from a memristor
(NbO, device shown here)
—
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Directly emulates signals seen in brains

3 20 (a) I
Q
£ 0~
1 ® — -
0.44 Exp e
. ISl
o
<2 0.2
0.0+
1 ©
0.44 Sim
2 0.2-
0.0
1 @
0.44 Exp
= ]
-2 0.2
0.0+
1 @
0.449 Sim
-5 0.2+
0.0
1@
0.4 Exp
<2 0.2
0.0 4
1 @
0.449 Sim
- ]
-20.2-
0.04
(o] 100 200 300 400 500
time (us)

“Regular Spiking”
C,=5.1nF C,=0.75 nF

“Chattering”
C,=51nFC,=05nF

“Fast Spiking”
C,=1.6 nF, C,=0.5 nF

M.D. Pickett, et al. Nature Materials 2013 17



Highly compact artificial neuron

—___.__-————___~
- ==
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Compared to brain:

- 500x frequency
7'"_"-'_--1OOx less energy/spike
{100 nm vs 100 um

W bottom electrode

o~y Dark field cross-sectional TEM image of NbO, memristor R,C, <0.1ns
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Apply to Important Optimization Problems

NP-hard and NP-complete problems:

For a problem of size N, running time or
memory use grows >> exp(N)

Important Graph Problems:

_ . _ , Examle: |
“Set Cover” - applies to airline flight scheduling

Every year, the National Football League (NFL)

“Traveling salesmen” — UPS, shipping builds their 256-game schedule for the next season

“Max-cut” — applies to VLSI layout, routing > Have to consider team match-ups, stadium

usage by other events, traffic, etc.

» Takes ~3months on a 1000-core system to solve!

*Source: Gurobi CEO Edward Rothberg

—

Hewlett Packard
Enterprise



Optimization Accelerator: memristor- Hopfield Network

WL
T = T = Encode any TSP instance in the DPE xbar
St 'Wwoo.ﬂ """r\i/mn ﬂ—_
5 § g & = — X .
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1S 7™ = . . . . .
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1o | b , Traveling Salesman
: : 1if Ws';,; >0
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Synapses w;; Neurons s; _ ' —1if Ws';; <9
Memristor DPE | +|Memristors with| Find shortest route
Non-Linear visiting all cities
threshold
_ S Kumarr, et al. Nature (2017)
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Optimization Accelerator: memristor- Hopfield Network

WL
& - 'I_i_f &
st vvoo‘v‘]iiL Lalvns ST
e 5 L ha R o o
S| |2l g e T T Y e Y
SE) ; 1TIM array
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iﬁ v’ 0
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—

Hewlett Packard
Enterprise

-20 -

-40 |

-60

-80

-100 j

-120 1

-140

-160

-180

-200

No noise Noise added

L VWARAVA W AWL'E} : LA Nonoise
- N N - - -
—r—" VTN Noise (just right)
0 10 20 30 40 50 60 70 80 90 100
Cycles

S Kumarr, et al. Nature (2017)
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Summary

—The computing world has become heterogeneous, there is no turning back
—Big opportunities to speed up applications with significant markets

—You can jump >20 years into the tech future with a special purpose accelerator
—Harness emerging devices to build new architectures

—But we also need software to rise to the challenge
« Can’t depend on hardware to keep up performance growth

—We must consider system balance (compute, memory bandwidth, cooling)

—We are kicking off a new Cambrian explosion, with plenty of extinctions coming
— an exciting time to be designing computing systems!
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Thank?you
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http://www.labs.hpe.com/
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