

Reconfigurable SOI-CMOS PA

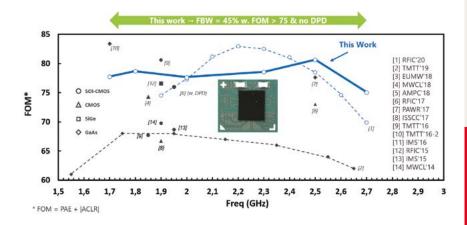
High power broadband reconfigurable SOI-CMOS PA module

About this reconfigurable SOI-CMOS PA

CEA-Leti introduces a reconfigurable SOI-CMOS PA that can penetrate 4G, 5G and WiFi6/6E markets. To do so, CEA-Leti has developed a high power highly integrated broadband reconfigurable SOI-CMOS PA supporting High-Power User-Equipment (HPUE) power mode with excellent efficiency and linearity without pre-distortion and supply modulation.

Applications

- 4G/5G front-end modules for smartphones
- WiFi6/6E front-end modules
- Energy-efficient low-cost 5G small-cell and WiFi6/6E networks for smart manufacturing and Industry 4.0.


What's new?

About the broadband reconfigurable PA Module:

- Combines a high-efficiency tunable Doherty architecture with SOI-CMOS technology
- Classical bandwidth limitation of the Doherty PA architecture is overcome by an efficient integration of tunable features in SOI-CMOS technology
- PA module includes biasing and digital control circuitry on the same die

Key figures:

- Wideband signals (10 to 100 MHz) with high peak-to-average-power-ratio (> 6 dB)
- State-of-the-art efficiency (57% peak)
- High power levels (up to 4 Watts)
- Extended frequency range (1.7 GHz to 2.7 GHz)
- High-linearity (<-35 dBc) and efficiency (> 40%) over the entire operating band (1.7-2.7 GHz)

Benefits from RFSOI PA solution:

- From a design perspective, enabling the integration of several additional features (digital controller, power management, LNAs and switches) along with the PAs.
- Cost reduction of the RF FEM, RFSOI foundries having a large capacity for high-volume production with 200 mm and 300 mm wafers.
- The combination of these factors will enable energy-efficient low-cost digitally assisted 5G small-cells and WiFi6/6E networks for smart manufacturing and Industry 4.0.

CEA-Leti roadmap

- 1. Develop new High-Efficiency PA and Transmitter architectures such as hybrid load/supply modulated architectures. enabling significant boost in efficiency, operating bandwidth, and linearity.
- 2. Develop new integrated RFSOI FEM (Front-end-Module) demonstrators to address new applications/markets such as 5G small-cell, Cellular Vehicleto-Everything (C-V2X), WiFI6/6E, 5G FR1/FR2 UE and infrastructure applications.
- 3. Explore higher frequencies and new technologies (RFSOI, GaN) requiring a move toward more aggressive nodes (< 100 nm), and the use of Fan-Out-Wafer-Level Packaging (FOWLP) to enable low-profile RF FEM solutions.

Key fact

Best Industry Paper Award-2nd place, IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2020

Interested in this technology?

Contact:

Michel Durr

michel.durr@cea.fr +33 787 005 645

CEA-Leti, technology research institute

17 avenue des Martyrs, 38054 Grenoble Cedex 9, France cea-leti.com

