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BRAIN-INSPIRED COMPUTING FOR ADVANCED IMAGE 
AND PATTERN RECOGNITION
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IMAGE RECOGNITION: KEY FOR FUTURE APPLICATIONS

Bus turning

CarCar

Truck

Assemblée Nationale

Obélisque de Louxor

= Rue Royale
Near rue Saint-Honoré
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Team/algorithm Date Test error

Supervision 2012 15.3%

Clarifai 2013 11.7%

GoogLeNet 2014 6.66%

Microsoft 05/02/2015 4.94%

Google 02/03/2015 4.82%

Baidu/ Deep Image 10/05/2015 4.58%

Shenzhen Institutes 
of Advanced 
Technology, Chinese 
Academy of Sciences

10/12/2015
(the CNN has 152 
layers)

3.57%

Now ?

COMPETITION ON IMAGENET: SINCE 2012, CONVOLUTIONAL 
NEURAL NETWORKS (CNN) ARE LEADING!
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From NVIDIA



| 5Leti Devices Workshop | Marc Duranton | December 4, 2016



| 6Leti Devices Workshop | Marc Duranton | December 4, 2016

EXPLORATION &
EXPLOITATION
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MATERIALS & DEVICES

Neuromorphic

DEEP LEARNING AND NEUROMORPHIC 
SYSTEMS AT LETI AND LIST
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Exploitation of Deep Neural Networks
• Image recognition, annotation and 

indexing
Tools for fast and accurate Neural 
Network (NN) exploration & Architecture 
benchmarking: N2D2
• Neural Network exploration (including with 

spike coding and new materials)

EXPLORATION &
EXPLOITATION

Neuromorphic
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DEEP LEARNING AND NEUROMORPHIC 
SYSTEMS AT LETI AND LIST
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• N2D2 is a platform to design and generate deep neural network  (DNN) and 
to select the computing platform which fit best application needs

• Fast benchmarking of Components Off the Shelf and exports to dedicated 
ASIC:

• Parallel processors  (OpenCL, OpenMP)
• GPU  (OpenCL, Cuda, CuDNN)
• FPGA  (RTL, HLS)
• Leti & List specific processors (like P-Neuro )

DEEP LEARNING WITH N2-D2 PLATFORM
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N2D2:  PLATFORM FOR DEVELOPING DEEP 
NEURAL NETWORK APPLICATIONS
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Automated architecture mapping and benchmarking too l flow

FAST AND ACCURATE NN EXPLORATION
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; Environment
[env]
SizeX=8
SizeY=8
ConfigSection=env.config

[env.config]
ImageScale=0

; First layer (convolutionnal)
[conv1]
Input=env
Type=Conv
KernelWidth=3
KernelHeight=3
NbChannels=32
Stride=1

; Second layer (pooling)
[pool1]
Input=conv1

Type=Pool
PoolWidth=2
PoolHeight=2
NbChannels=32
Stride=2

; Third layer (fully connected)
[fc1]
Input=conv2
Type=Fc
NbOutputs=100

; Output layer (fully 
connected)
[fc2]
Input=fc1
Type=Fc
NbOutputs=10

1) Deep network builder 2) Learning a database 3) Analysis of network 
performances

Learning

Test

Output 
categories and 

localization

R
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. 

ra
te

N2D2 software framework

� OpenMP
� OpenCL
� HLS FPGA

4) CPU, GPU and FPGA-based real-time implementation

���� Wide targets range, perfs and power metrics

Inference phase
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CONSTRAINTS
• Real time with very high throughput (20m/s)

• Tiny defect (~mm) with low contrast

• Complex environment (oil vapor, few space for inspection..)
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1) Defects labeling and visualization 2) NN Exploration and benchmarking 3) Defects identifications after NN learning

Learning

Test
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SOLUTION
Database labelling and Processing

Fast NN topology Exploration

Performance vs complexity analysis

EXAMPLE OF INDUSTRIAL APPLICATION of N2D2: 
ROLLING MILL

���� From scratch exploration (database and NN construct ion) to industrial application���� Real time performance achievable on FPGA (direct co de generation)
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Exploitation of Deep neural Networks
• Image recognition, annotation and 

indexing
Tools for fast and accurate Neural 
Network (NN) exploration & Architecture 
benchmarking: N2D2
• Neural Network exploration (including with 

spike coding and new materials)

EXPLORATION &
EXPLOITATION

IM
P
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E
N

TAT
IO

N

Diversity of implementations:
• Software solution / GPU
• Reconfigurable devices / FPGA
• Dedicated implementations

• Full CMOS and binary coding: P-NEURO
• Full CMOS and “spike coding”
• Using new materials

Neuromorphic

Leti Devices Workshop | Marc Duranton | December 4, 2016

DEEP LEARNING AND NEUROMORPHIC 
SYSTEMS AT LETI AND LIST
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N2D2 and P-Neuro: complete solution for 
Deep Learning in smart nodes
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� Fast benchmarking of  Components Off The Shelf:
� Parallel processors
� GPU
� FPGA (HLS)

� Performance of P-Neuro neural network processing unit
� Example on Faces extraction, 

� Database of 18000 images
� Comparison of 5 different 

architectures
� Focus on energy efficiency
� Expected performance of P-Neuro:

� FDSOI 28nm, 1GHz
� 1.8 TOPs/W, <0.5 mm2 (4 cores)
� Fully scalable from 1 to 1024 cores
� Ready for integration in smart nodes

OpenMP
OpenCL
CUDA
HLS FPGA

Parallel CPU
GPU FPGA

Target Frequency Energy  

efficiency

Quad ARM A7 900 MHz 380 images/W

Quad ARM A15 2000 MHz 350 images/W

Tegra K1 850 MHz 600 images/W

Intel I7 3400 MHz 160 images/W

P-Neuro (FPGA) 100 MHz 2 000 images/W

P-Neuro (ASIC) 500 MHz 125 000 images/W 



| 13

SPIKE-BASED CODING
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Two test chips implemented in 
65nm

Reptile: 3 tiles of 12 neurons
Spider:  25 tiles of 12 neurons

Advanced technology nodes
Comparison of Analog and Digital neurons
Gain of Analog neuron (less area) reduces
→ Curves cross at 22nm node

THE PROMISES OF SPIKE-CODING NN

Leti Devices Workshop | Marc Duranton | December 4, 2016

Reduced computing complexity and natural temporal and spatial parallelism 
Simple and efficient performance tunability capabilities
Spiking NN best exploit NVMs such as RRAM, for massively parallel synaptic memory

Formal neurons Spiking neurons

Base operation - Multiply-
Accumulate (MAC)

+ Accumulate only

Activation function - Non-linear 
function

+ Simple threshold

Parallelism - Spatial 
multiplexing

+ Spatial and temporal 
multiplexing
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Exploitation of Deep neural Networks
• Image recognition, annotation and 

indexing
Tools for fast and accurate Neural 
Network (NN) exploration & Architecture 
benchmarking: N2D2
• Neural Network exploration (including with 

spike coding and new materials)

EXPLORATION &
EXPLOITATION

IM
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TAT
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N

Diversity of implementations:
• Software solution / GPU
• Reconfigurable devices / FPGA
• Dedicated implementations

• Full CMOS and binary coding: P-NEURO
• Full CMOS and “spike coding”
• Using new materials

Take full advantage of advanced 
devices to break the density and 
power issues:
• 3D integration, CoolCubeTM.
• RRAM, PCM and new devices,

MATERIALS & DEVICES

Neuromorphic

DEEP LEARNING AND NEUROMORPHIC SYSTEMS 
AT LETI AND LIST
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Neural Networks
Naturally 3D for 2D inputs, layers optimally distributed in stacked dies
Vertical connections between layers: minimizes interconnect length,
avoid routing congestion

NEMESIS 3D two-layers SNN test chip
1st layer: 48 macro-block neurons, 1024 synapses per neuron (49 152 total)
2nd layer: 50 fully connected neurons, 2 400 synapses

3D SPIKING NEURAL NETWORK

[B. Belhadj, R. Heliot, P. Vivet, CASSES’2014]

Nemesis Test Chip
ALTIS 130nm
CuCu bonding 

Two-layers 
SNN circuit

2D 3D

Total area 
(mm²)

7,97 3,63 (-54%)

Power (mW) 428 354 (-17%)
Critical path 

(ns)
9,00 6,63 (-26%)

���� 3D offers 2x better total area and 25% better power  efficiency vs 2D
Leti Devices Workshop | Marc Duranton | December 4, 2016
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LEARNING FROM NEUROSCIENCE: A STDP 
(SPIKE TIMING DEPENDENT PLASTICITY) PRIMER

post-synaptic 

Neuron 

pre-synaptic 

Neuron

Neuron

Axon
Dendrite

Electrical 

signal

Synapse

Δt = tpost - tpre

S
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t 
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(%
)

STDP = correlation 
detector

� Possible 
learning model of 

the brain?

tpre tpost<tpretpost <

Causality
Potentiation 

(LTP)

Anti-Causality
Depression (LTD)
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NEW ELEMENT: RRAM AS SYNAPSES

PCM
GST
GeTe
GST + HfO2

M.Suri, et. al, IEDM 2011
M.Suri, et. al, IMW 2012 , JAP 2012
O.Bichler et al. IEEE TED 2012
M.Suri et al., EPCOS 2013
D.Garbin et al., IEEE Nano 2013

CBRAM
Ag / GeS2

OXRAM

D.Garbin et al. IEDM 2014
D.Garbin et al., IEEE TED 2015

TiN/HfO 2/Ti/TiN

Thermal 

effect

Electrochemical

effect

Electronic effect

oxygen vacancies
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PRINCIPLE CROSSBARS OF MEMRISTORS

First Proposed by Snider (1)
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Synaptic 
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Post-
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spike
(feedback)

1. G. Snider, Nanoscale Architectures, 2008
2. B. Linares-Barranco et al, Nature Precedings, 2009
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Neurons activity

Network topology

Input stimuli

N2-D2
Neuromorphic 

simulator
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 LTD
 LTP simulation
 LTD simulation

Neuron model

Example: Leaky Integrate 
& Fire (LIF) neuron
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BIO-INSPIRED MODELS EXPLORATION
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���� Complete tool flow for bio-inspired synapses, neuro ns and learning rules 
network simulations

[O. Bichler et al., NanoArch’2014]
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NVM SYNAPSES IMPLEMENTATIONS

2-PCM synapses for unsupervised cars trajectories e xtraction

CBRAM binary synapses for unsupervised MNIST handwr itten digits 
classification with stochastic learning

Equivalent

2-PCM synapse

I = ILTP - ILTD

ILTD

ILTP

From spiking pre-synaptic 

neurons (inputs)
VRD

Spiking post-

synaptic neuron 

(output)

PCM

Crystallization/
Amorphization

CBRAM

Forming/Dissolution of
conductive  filament

[O. Bichler et al., Electron Devices, IEEE Transactions on, 2012]

[M. Suri et al., IEDM, 2012]
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EXAMPLE OF ON-GOING INVESTIGATIONS:  
VRRAM FOR NEUROMORPHIC APPLICATIONS

• Investigation of VRRAM based on CBRAM stack
• 2 levels (proof of concept)
• 16 levels (goal)
• 1 select transistor per level (proof of concept)
• Integrated selector (goal)
• CBRAM most suitable R for neuromorphic
• OxRAM also analysed

VIA

• Design: support development for VRRAM
• High Density : Estimate the maximum size of a VRRAM-based array 

supposing to have an integrated selector [E. Cha, ISCAS 2014]
• Neuromorphic : propose a circuit dimensioning for the neuromorphic

approach presented at IEDM 2015 (1TnR pillar ~ Synapse, NO Selector)

Leti Devices Workshop | Marc Duranton | December 4, 2016



| 23

AN EU COLLABORATIVE PROJECT: NEURAM3

Objective: 
Fabricate a chip implementing a neuromorphic 

architecture that supports state-of-the-art machine 
learning algorithms and spike-based learning 
mechanisms.

Features:
28nm FDSOI technology with RRAM synapses
Ultra low power scalable and reconfigurable 

architecture
50x lower dissipation than digital equivalent
TFT based scalable multichip architecture platform
A technology to implement on-chip learning, using 

native adaptive characteristics of electronic synaptic 
elements

Leti Devices Workshop | Marc Duranton | December 4, 2016
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A NEW EU COLLABORATIVE PROJECT: NEURAM3

Leti Devices Workshop | Marc Duranton | December 4, 2016
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Summary of key points

LETI AND LIST ASSETS IN DEEP LEARNING

Leti Devices Workshop | Marc Duranton | December 4, 2016

Deep 
learning 
research

Application 
portfolio 

Leti & 
List

Software 
frameworks

Hardware
Accelerator

Advanced 
implementa

-tions

• Large-scale database GPU-
accelerated learning for 
CNN

• Among the leading teams on 
ImageClef2015 contest 

• From scratch exploration to 
industrial applications

• Lead in bio-inspired STDP 
learning (IEDM’11,12,14)

• Formalized spike-coding 
for CNN, complete tool 
flow for co-simulation

Related 
topics: 

FDSOI, IPs, 
3D, MEMs, 

IoT…

• Complete 
framework with C, 
OpenCL, CUDA and 
HLS exports

• Complete tool flow 
for spike-coding 
DSP

• Competitive reconfigurable 
architecture with P-Neuro

• Spike-coding DSP 
architecture

• Increased efficiency with 3D

• 2-PCMs synapse 
(patented) scheme 
(IEDM’15)

• Lead in SNN with RRAM 
devices (IEDM’14)
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