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Introduction to STEM-based metrology

Manual TEM microscopy Automated TEM microscopy & metrology

Automated full wafer sample prep Automated STEM imaging & metrology
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Relatively fast, fully automated & reproducible
Automated STEM acquisition & automated metrology

ExSolve WTP

Slow, manual, not reproducible

Operator dependent

Poor statistics
STEM metrology difficult

> 1000 metrology data per hour

Statistically relevant STEM metrology is possible




Outline: Why statistics do matter in STEM-based metrology

Four examples of statistics and automated STEM acquisition & metrology:

1. TEM Microscope’s calibration by pitch measurements oo

2. Low-K dielectric structure metrology -----------------emmerr oo

- 3. Pitch walk analysis of complex FinFet transistor structure = ----------------rmmeeoeees

4. Determination of small process variation in silicon nanowires ------




STEM METROLOGY EXAMPLE # 1




How precise can we determine the STEM microscope’s calibration? Example # 1

- Typical automated STEM metrology precision is better than ~0.3nm, 3¢ --how about accuracy?

« Transmission Microscopes are calibrated using the Silicon lattice as internal standard
- Calibration and image distortion corrections: proprietary FFT and auto-correlation routines...

« But how can a TEM end-user verify the microscope calibration and its accuracy?
« All CMOS device dimensions vary and , a priori , are unknown. Exception : Lithography patterning pitch
 Practical complication with STEM based Pitch measurements: Line Edge Roughness (LER):
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How precise can we determine the STEM microscope’s calibration? Example # 1

» Pitch measurements on patterned Metal 1 TiIN Hard Mask structures (Pitch . ming = 48.0 nm)

STEM Pitch measurements of TiN lines & spaces ( 48 nm nominal)
8 12

PITCH =48 nm, L/S = 24/24 nm
Pitch 1 Pitch 2 Pitch 3 55 pitches from 5
one lamella
Variation in pitch o Median =48.3nm | | =
. Average =48.2 nm 3
due mostly to line z 1sigma = 1.27 nm
foo edge roughness :
Etch stop 0 f L e B e B e S ¢

40 42 44 46 48 50 52 54 56 58 60
PITCH (NM)

* N =55 (features per lamella)

* Average pitch =48.22 nm, 16 = 1.27 nm

- Precision of estimated average pitch for one lamella = /AN = 0.17 nm (1 standard error)
Calibration Accuracy cannot be estimated better than ~ 0.7 % (95% confidence interval)




How precise can we determine the STEM microscope’s calibration? Example # 1

* Pitch measurements on patterned Metal 1 TiN Hard Mask structures (Pitch . no = 48.0 nm)

49
488 | < 32 lamellas ——
g 486 | = = = e e e e - = - - - - - - - - -
S 184 @ @) °
= ® o
g 48,2 @0 ®)
g 1 |gg--@-@----- o----!!-----.o-!.--
o ONG)
o 478 e
2 o %o ©¢
S 476
3 474 | = = o= = = = - = = = - _ _ __.
=)
T 472
2
b 47
0 10 20 30 40
Die location (Lamella #)
@ Pitch perlamella = = accuracy =-1,25% = = accuracy = +1.25%

* N = 55 (features per lamella)
* Precision of estimated pitches = 0.24 nm (10)
Accuracy cannot be estimated better than 1%

120 1,2

110 | <LER>=3.28 nm
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FREQUENCY

50

Median =47.986 nm
Average =48.005nm
lsigma =1.54nm

40 0.4

30

CUMMULATIVE DISTRIBUTION

20 0,2

10

0 0

40 42 a4 46 48 50 52 54 56 58 60
PITCH (NM)

N = 1760 (32 lamellas x 55 features)
 Precision of estimated pitch = 0.036 nm (1oc)
Accuracy can be estimated to within < 0.15%
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STEM METROLOGY EXAMPLE # 2
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Example # 2

STEM based metrology to evaluate a M1 dielectric etch process

- EUV patterned Low-K Dielectric(Pitch =48.0 nm)

nominal

Left and right pitch measurements to determine
Line Edge Roughness and to confirm microscope
accuracy

LER = 3o Distribution (Pitch ;;,,)/ V2

Oxide CD to determine Line Width Roughness

LWR = 3o Distribution (CD ;)

 Study line CD, LER and LWR as a function of etch time

Wafer #03 , shortest etch-time

L eft Pitch

R 1
0

Right Pitch

- STEM sampling: 5 different wafers, 5 Die locations per wafer, 60 lines/lamella == ~ 1500 lines analyzed
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CD, LER and LWR metrology from STEM pitch and CD distributions

- Pitch and CD measurements on patterned Metal 1 low-K dielectric structures (Pitch ,ying = 48.0 Nm)

Pitch measurements Oxide CD measurements

150 1,2 100 1.2

Eg <LER>=2.50 nm 9o [ <LWR>=4.23nm

120 Median =48.05nm ' ~ 80 '

110 Average =48.06 nm o 70 owfr 03: time = +2 >

100 || 1sigma =1.176 nm 08 5 , 08 O
z.) 90 E . 60 mwfr 07: time = +1 3
,_,z; jg 0.6 % % 50 mwfr 02: time = 0 0,6 %
T 60 E E 40 | | awr o6: time = -1 y

1512 04 g 30 Bwfr 21; time = -2 o4 §

30 02 8 20 02 %

20 s}

10 10

0 e 0 0 e ____ 0

40 42 44 46 48 50 52 54 11,00 13,50 16,00 18,50 21,00 23,50 26,00
PITCH (NM) TOP OXIDE LINE WIDTH (NM)
« N = 2824 (left & right pitches of 1412 lines) * N = 1412 (line width CD of 1412 lines)
 Average Line Edge Roughness = 2.50 nm  CD distributions per wafer (N, =~ 300)
« Microscope calibration confirmed » cumulative histogram
ThermoFisher
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Can STEM metrology quantify etch time effects on CD, LER and LWR?

- Pitch and CD measurements on patterned Metal 1 low-K dielectric structures (Pitch ,ying = 48.0 Nm)

Etch time effects on CD, LWR and LER LWR vs. LER, STEM
5 25 55
..... - 24 E =1, X + 0,
Rl B P @ @ @ 2 ; s | VT e T T
E 4r o e o L 22 E = 45 . i ’ ’
< @ y = -0,55% + 20,2 L, = = , I
8 35 R T A R2 = 0,9634 g S 4 — : = ‘.
= T AL r20 3 S : ®—= !
T A 19 © O 35
c O -
= = p —
§a25f @ @ @ F18 o T 3 , [
O | Leeeeseeeneett . ..... | 2 é . T J_ J_J_ ]
=, y = 0,0965x + 2,4408 ) =
- R =0,887 - 16 s 2°
15 15 x
-3 2 -1 0 1 2 3 z 17 1,9 21 2,3 2,5 2,7 2,9 31
dielectric etch time (a.u)
L . LER from Pitch variation (3s, nm)
@LWR @LER Aoxide line width
« STEM metrology confirms etch trends: * LWR and LER values per lamella (N = 55):
» Line CD decreases for longer etch times * Errorin LWR / LER estimates: ~ 18 /8 %
* LER and LWR increase for longer etch times - Ratio LWR /LER ~ 1.42 (LWR =~2 LER)
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STEM METROLOGY EXAMPLE # 3
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STEM based metrology to evaluate a 7 nm-node FinFET device structure

« SADP patterned Silicon dummy Gate lines (Pitch =42.0 nm, Gate line CD = 16.0 nm)

nominal nominal —

« SAQP patterned Silicon Fin lines (Pitch =25.0 nm, Fin line CD = 6.0 nm)

nominal — nominal —

7

IIIII

00 —

Wafer map of sampled Die locations “On-Gate” sample orientation STEM image of Fin structure “On-Fin” sample orientation “STEM image of Gate line structure

\.

 Study line CD, (random) LER and LWR, (systematic / random) pitch walk and structural bending
- STEM metrology sampling: 8+8 Die locations (lamellas), ~ 50 lines/lamella, == ~ 400 Gates/Fins analyzed
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Can STEM metrology detect & quantify systematic & random Pitch walk?

« SADP patterned Silicon dummy Gate lines (Pitch =42.0 nm, Gate line CD =16.0 nm)

nominal nominal —

--------------- Gate pitch
Pitch walk due to SADP
Line bending
Core pitch -
_ LER variance
No pitch walk Line bending variance
Line bending

LER variance
Line bending variance

Core Pitch & Gate Pitch
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Can STEM metrology detect & quantify systematic & random Pitch walk?

« SADP patterned Silicon dummy Gate lines (Pitch ,ina = 42.0 nm, Gate line CD o = 16.0 Nm)
Core pitch Gate pitch
STEM-HAADF Measurement distribution of gate CORE pitch STEM-HAADF Measurement distribution of GATE pitch
60 1,2 40 1,2
average = 83,9 nm ] average = 41,96 nm
50 1sigma= 2,76 nm 1, 35 1 sigma = 4,70 nm L
g 30 z
40 08 2 - 0,8 %
) 25 o
S o s x
230 06 5 i 20 £ 06 2
3| -l R 3 n
%20 042 ris 04 E
5 10 >
10 022 —A L 02 2
3 ° ©
T 1o 0 b Lo
70,00 75,00 80,00 85,00 90,00 95,00 100,00 20,00 25,00 30,00 35,00 40,00 4500 50,00 5500 60,00
SATE CoREPITER Core Pitch & Gate Pitch GATE PITCH (NM)
* N =~ 400 (Core pitches measured) « N = ~800 (gate pitches measured)
* Core Pitch ( 83.9 nm) : Normal distribution - Gate Pitch : a bi-modal distribution.
Variance : ~random LER and Bending Pitch-walk + Bending is estimated at ~8 nm (24)
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Can STEM metrology separate systematic Pitch walk and Bending?

« SADP patterned Silicon dummy Gate lines (Pitch =42.0 nm, Gate line CD =16.0 nm)

nominal nominal —

Measure pitch at top of bended Gate lines:

Pitch includes pitch walk and bending . I T r

Top pitch measurements

Bottom pitch measurements

Measure pitch at bottom of bended Gate lines: (. “l
Pitch includes pitch walk but no bending
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Can STEM metrology separate systematic Pitch walk and Bending?

Example # 3

60 1.2 34 1.2
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BDTTOM GATE LINE PITCH (NM) BOTTOM GAJE LINE PITCH (NM)
40 12 22 12
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» . bottom .
18
30 average =43.91nm
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520 06 w =) 06 w
g Z I 10 Z
U T | S| ® 5
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bottom 5 6 5
10 s} o
average =40,111 nm| 02 4 02
5 1sigma=4.15%
1sigma= 1.66 nm 2
, Il. , , 111 ,
30,00 35,00 40,00 45,00 50,00 55,00 60,00 30,00 35,00 40,00 45,00 50,00 55,00 60,00
BOTTOM GATE LINE PITCH (NM) BOTTOM GATE LINE PITCH (NM)
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IP-_SI L

Pt+g

P+

P+

(1)

L)

Pitch location

Pitch value (nm)

P_

40.1

P+

43.9

P-¢

37.7

P™+¢

46.0

¥

SADP pitch walk (2A)

3.8 nm

Line bending (2¢g)

4.5 nm

« Bottom and Top Gate Pitch measurements allow to separate structural bending from Pitch-walk !
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STEM METROLOGY EXAMPLE # 4
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How capable is STEM for process control and process development?

STEM-EDX metrology on NanoWire devices:

Horizontal Si nanowires, <7nm node

Measure height and width of top and bottom
nanowires

196 nanowires analyzed

Metrology derived from STEM-EDS
elemental maps

Oxide

(b)
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How capable is STEM for process control and

process development?

Example # 4

« STEM-EDX metrology on Silicon NanoWire devices: analysis of NW diameter (height-width)

15

STEM-EDX metrology OF Silicon NW dimensions (width)

Si-MAP

average = 11,27 nm
1sigma= 0.72 nm

10

FREQUENCY

700 800 900 10,00 11,00 12,00 13,00 14,00 15,00

SILICON NANOWIRE WIDTH (NM)

1,2

o o o
EN o [e5)

CUMMULATIVE DISTRIBUTION

o
V)

0
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How capable is STEM for process control and process development?

« STEM-EDX metrology on Silicon NanoWire devices: analysis of NW diameter (height-width)

STEM-EDX metrology OF Silicon NW dimensions (height)

20 1,2
SI-MAP
1
average = 10,42 nm

15 | 1sigma= 0.78 nm >
o)
08 E
o 3
z =
w %)
3 10 Top Bottom 06 &
e nanowires nanowires Y
m <
04 3
=
5 =
(@]

o
N

0
6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 14,00 15,00

SILICON NANOWIRE HEIGHT (%)
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How capable is STEM for process control and process development?

« STEM-EDX metrology on Silicon NanoWire devices: analysis of NW diameter (height-width)

STEM-EDX metrology OF Silicon NW dimensions (height)
20 1,2

Si-MAP

average = 10,42 nm
15 || 1sigma= 0.78 nm

o
Y

o
)

Bottom
nanowires

Top
nanowires

FREQUENCY
=
o

I
H
CUMMULATIVE DISTRIBUTION

o
N

0
6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 14,00 15,00

SILICON NANOWIRE HEIGHT (%)

With sufficient sampling, STEM metrology can reveal subtle, systematic 3D dimensional variations !
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How capable is STEM for process control and process development?

II USL

<X> <X> + 10%

Target for process control: C, > 2.0

Com = _USL=LSL

6 O “metrology

LSL ‘l usL

<X>+10%

Target for metrology control: C,,, >10

= measured process variance

<X>-10%

r=1-

ozmetrology

ozmeasured process

<X>+10%

Target for metrology control: r > 0.5

Average CD measul

rements from N STEM measuremen

1 sigma precision of <CD> {nm}

Lsigma precision of <CD> (nm)

e
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10 100 1000
STEM CD measure (=N}

Average CD

from N STEM

1000
 STEM €D measurements (=N)

Example # 4

* Application of different “Metrology Capability Indicators™. P/T ratio and Variability ratio (r)

Measured process (Y) = real process (X) + metrology error (g)
Y=X+¢& =2 o?, =0’ ,0%

- 2 2
r= (G real process / O measured process )

- 2 2
r=1- (G metrology /G measured pmcess)

This variability ratio r is a good indicator for the quality
of the metrology system to monitor a process:
= First class monitors:r>0.8
*  Second class monitors: 0.5<r<0.8
monitors: 0.2 <r<0.5
* Fourth class monitors: r< 0.2

Laurens.kwakman@thermofisher.com

In full Paper: more comprehensive analysis of capability indicators and effect of statistics
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Conclusions

« Automated TEM workflows allow to efficiently collect statistically significant STEM metrology data
that are precise and accurate and can give insights in device characteristics and processes.

» To assess device dimensions that have local fluctuations, many (50-500) individual STEM data
have to be averaged to achieve the required precision.

* LER, LWR, but also Pitch Walk and Structural Bending can be deduced from Pitch and CD
distributions.

- STEM metrology is shown to be able to pick-up subtle, systematic 3D dimensional variations
(~ 1.5 nm) that can not be measured by 2D metrology technigues
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